Enabling TBO

Mediating to FIXM from multiple data sources to enable SWIM

Presented to: ATIEC 2016

By: Nadine Alameh (Snowflake Software)

& Samet Ayhan (Boeing BR&T)

Date: 22nd September 2016

Aviation Information World - Forecasting the Future

Overview

- Context
- UAS TBO Introduction
- FIXM Mediation and Exchange
- Lessons Learned & Conclusion

Context

- It often takes considerable time and effort converting and harmonizing flight data for use in applications.
- The introduction of FIXM and the concept of Flight Object Exchange Service make it easy to mediate data into a single model.
- This drives the focus to be on utilizing the data in sophisticated applications.

TBO UAS Overview (1/2)

General

- FAA funded project
- Collaborative R&D project with industry partners

Goal

- Investigate Trajectory Negotiation processes and concepts to resolve conflicts focusing the en-route phase of flight (manned & unmanned) in Class A airspace
 - Information Management integrated with MG environment using FIXM 3.0.1

TBO UAS Overview (2/2)

Use Cases and Scenarios (1 mth)

- Flight Planning and Filing
- FMS Upload
- Enroute transit

Modeling & Simulation (2 mths) Explore TBO benefits on larger scale environment within a closed system

- Explore Trajectory communication/definition issues between multiple Ground-Based Systems of varying fidelity
- Ability to make rapid changes in Environment and Setup
- Prepare background traffic and FMS flight Plans for lab exercises
- Risk-Reduction for Scenario/Scripting

Progressively more Realistic Systems/Scenarios

Laboratory Exercises (3 mths)

- FMS implementation of Flights
- Real Conflict-Detection Systems
- Real Information Exchange between Systems
- Mimic Live-Flight Scenarios as much as possible
- Risk-Reduction for Live Flight Exercise

Live/Laboratory Flight

(2 mths)

 Demonstrate TBO and Information Exchanges with Real Aircraft

TBO UAS Mini Global Integration

Mini Global SWIM

- Integrated to Global Enterprise Messaging Service
- Information exchange based on international data models and standards (e.g., FIXM)
- Information exchange across multiple GEMS providers
- Publication and receipt of FIXM flight objects to FOXS
- Integration of CDS conflict reports with TBO tools and systems

TBOTrajectory Based Operations

- Trajectories generated by real aircraft avionics
- Aligned with prior FAA UAS research
- Enables paradigm shift to TBO

Architecture

IASL Test Flights Overview

Aircraft 1: UAS001 (IASL)

Departure Airport: Boeing Field, Seattle (KBFI)

Arrival Airport: Gary, Indiana (KGGY)

Aircraft 2: TBO002 (sFMS)

Departure Airport: Burns, Oregon (KBNO)

Arrival Airport: Blue River, BC, Canada (CYCP)

Aircraft 3: TBO003 (sFMS)

Departure Airport: Rome, Oregon (KREO) Arrival Airport: Calgary, Canada (CYYC)

Demonstration Details

Conflict cleared by flight plan amendment or level change

Conflict cleared by trajectory edit

Live Flight Overview

- Conducted on Nov. 6th, 2015
 - Departure Airport: St. Louis Missouri (KSTL)
 - Arrival Airport: Stockholm, Sweden (ESSA)
 - Aircraft: Boeing Executive Fleet B737 (N834BA)
- Data collection from live aircraft
- Procedure
 - Intent received from aircraft, trajectory generated
 - Published to MG as FIXM flight object, also to CDS
 - Conflicts with sFMS instances
 - Conflicts resolved

Mediating to FIXM

- Data mediated from proprietary XML formats to FIXM:
 - GE FMS Aircraft State data.
 - 2. Predicted trajectory generated using Boeing Trajectory Prediction Engine (TPE).
 - 3. TAAM simulated aircraft position reports in the form of ASDI.
- Data mediated to FIXM 3.0.1 core.
- Used for the exchange of trajectory and flight position information.

Exchanging FIXM

- Data taken from JMS topics and made available to stakeholders via:
 - Web Services
 - HTTP POST
- Spatiotemporal filtering available via Web Service interface.

Benefits

- Mediation used COTS software configuration only.
 - Enabling development focus on data utilization, not data transformation and management.
- Benefits provided by using FIXM:
 - Common understanding.
 - Increased interoperability.
 - Flexibility and adaptability.
 - Increased dynamism and distribution across flight operation.

Lessons Learned

FIXM Recommendations:

- Stricter cardinality of elements and attributes
- Need for globally applicable business rules
- Further alignment with other standards
- Clearer usability guidance
- Tighter schema restrictions and constraints
- Informed FIXM development particularly trajectory descriptions

Conclusions

- Successfully demonstrated how flight data from different feeds can be mediated to FIXM using COTS products.
- Data made available in FIXM was proven to improve TBO applications and provides new and innovative opportunities for utilizing the data.
- Transformation of legacy formats and utilization of FIXM lead to recommendations report.

Questions?

nadine.alameh@snowflakesoftware.com

samet.m.ayhan@boeing.com