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Deep Learning for NAS
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• Big Data
• Data Science
• Big Data Analytics Trends
• Deep Learning Technique
• NAS Application



NIST Big Data Reference Architecture
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https://www.nist.gov/el/cyber-
physical-systems/big-data-pwg

Big Data consists of 

extensive datasets 

that require a 

scalable architecture 

for efficient storage, 
manipulation, and 
analysis.



Application Layer─Data Science
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Now: Internet of Things
Multi-tiered Architecture
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•Yes I’m a mac fan-girl

SG
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New: Compute vs. Data Intensive
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New Computing Trends
Compute-intensive parallel computing
Data-intensive parallel computing
Data Centers and Data Lakes
CPU and GPU
Data Mining and Data Science
Network for sharing vs. distributed computing
Distributed Analytics
Cloud and Micro-services
Network Effect



Modeling Implication
eature Extraction and Analysis
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No-Feature-Extraction Analysis 

Involves direct learning from data
Unsupervised for automated feature 
extraction
Combines supervised and unsupervised



ake a Cue From Neurobiology

Mimic the Brain 



Deep Learning
rm gained popularity in 2007

• Since 1980

• GPU computing
• Distributed 

computing 
• Distributed memory 
• Large-scale storage 

•Google’s deep network that automatically created image 
filters for recognizing faces and cats.

nch of machine learning based on a set of algorithms that attempt to model 

h-level abstractions in data by using a deep graph with multiple processing layers



’s Not Your Father’s Neural Network
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Deep Learning for NAS

Sensor Analytics
– Failure prediction

Trajectory Analysis
– Identification of hazard features



Component Failure Prediction

Sensor data from component
– Past data where failures have occurred
– Currently running data

Model learns from past data
– Features 
– Relationships between features and fault 

classification



Component Failure Prediction
eep Learning Use Case
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Component Failure Prediction
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ypes of Deep Learning

From Neural Network Origins
– Torch, Theano, Caffe
– Supervised and/or unsupervised

From Neurological Origins
– Numenta Hierarchical Temporal Memory
– Continual Learning



NuPIC Approach
umenta Platform for Intelligent Computing

Continuous online learning
Temporal and spatial patterns
Real-time streaming data
Prediction and modeling
Anomaly detection
Hierarchical temporal memory

http://numenta.com/biological-and-machine-intelligence/



Use Case: Trajectory Anomalies 
uPIC HTM

Learning directly from 
observations
Neuroscience-based pattern 
recognition

– Learning, as the brain learns
– Good for pattern recognition

Continuous learning
– Not constrained to train-test-live
– Accommodates drift

Anomaly detection
– In space and time



Summary

Separation of model-building and model-
scoring
Competition between data sharing and 
sharing analytics results
Alternate method for learning from data
– Without feature extraction

Competition between physics-based models 
and unsupervised learning



Questions/Comments?

nancy.w.grady@saic.com
philip.d.reiner@saic.com


