Aeronautical Information Services

Global Aviation Safety – Use Cases using XM's & SWIM

Presented to: ATIEC 2016

By: Trent Tinker (Luciad)

Date: September 21, 2016

Aviation Information World - Forecasting the Future

Luciad

We build **APIs**To deliver **geospatial situational awareness**

SWIM – Past, Present & Future

- 2008: Launch of a new information paradigm through the ATM system
- 2016: Technological reality at a global scale, supporting current and future aviation needs
 - Next-generation data exchange: AIXM, FIXM, WXXM
- 2016+: Wide area of applications and services that benefit from global interoperability through SWIM & *XM
 - Safer aviation system

Safe Integration of RPAS

- Increasing amount of RPAS operating in Very Low Level (below IFR / VFR altitudes)
 - Environmental monitoring
 - News / sports coverage
 - Remote-area delivery

- An integration into our ATM system is inevitable to safely benefit from its potential
 - Where can I fly? How can traffic be monitored & controlled? How to keep track of past RPAS flights?

RPAS VLLOC - Architecture

RPAS VLLOC

SWIM-based solution

- AIXM 5.1 to represent RPAS operations
- OGC WFS-T for exchange of RPAS operations
- OGC WPS for validation of RPAS operations
- Data ingestion: Digital NOTAM (FAA NDS, EAD), AIXM
 5.1 baseline (FAA NASR, EAD), weather data (OGC services), ...

Partners:

- VITO (European research organization)
- Unifly (ATM / RPAS consultancy)

SESAR SWIM Master Class 2014 Runner up

Demo

Contrail Formation Analysis

- Contrails have a net warming effect
 - Can be predicted by means of the Schmid-Appleman criterion
 - Difficult to avoid without technological assistance

- Enable pilots / air traffic controllers to easily determine probable contrail forming
 - Even small changes in the flight path can sometimes prevent contrail forming

ConSA - Architecture

ConSA

SWIM-based architecture

- WXXM 2.0 to represent contrail formation probability
- OGC WFS to dynamically calculate the probability based on live weather data input and to make it available to clients
- Data ingestion: humidity / pressure / temperature data via
 OGC NetCDF & WCS (e.g., Meteo France)

Partners:

- Airbus Defence & Space
- Meteo France

Airspace reservation analysis

- Ever increasing number of flights
 - More occupied airspace
 - Conflicting with users requiring a free portion of airspace
 - Test flights, military training flights, RPAS ...

- Enables users to find a free portion of airspace (airspace reservation) with minimal impact
 - Taking into account 4D trajectory information and existing airspaces

CAPS - architecture

CAPS

SWIM-based architecture

- AIXM 5.1 for airspace reservations
- OGC WFS-T for airspace reservation data exchange
- Data ingestion: AIXM 5.1 (airspaces), FIXM 2.0 (trajectories; migration to 4.0), weather data (OGC services)

Partners:

- Airbus Defence & Space
- SESAR SWIM Master Class 2014 Winner

Demo (ConSA + CAPS)

3 diverse use cases...

- With *XM and SWIM as driving / enabling technology!
 - Good + growing adoption by the industry & community
 - Fast development without compromising quality
 - Meeting next-generation aviation needs
 - Interoperability & reusability
- Contributes to global aviation safety
 - RPAS VLLOC: safe integration into the ATM system
 - ConSA: climate safety
 - CAPS: 4D impact analysis → increased safety

Thank you

- Questions? Contact us at info@luciad.com
- Visit us at the exhibition