Climate Science Modelling Language: Overview and Roadmap

Andrew Woolf¹, Dominic Lowe², Oliver Newell³ Rutherford Appleton Lab, UK

- (1) STFC e-Science Centre
- (2) British Atmospheric Data Centre
 - (3) MIT Lincoln Laboratory*

*Remote presenter, WXXM context

Outline

- CSML aims & design principles
- ISO/DIS 19156
- CSML v3
- CDM / CF
- Roadmap
- Issues

CSML aims

- To provide a simple standards-based application schema
 - Tuned to the requirements of the met/ocean community
 - Covering a majority of common information types
 - Integrating easily with existing technology
- Re-usable component for multiple met/ocean application domains

CSML/WXXM Context

- CSML 2 Source of design principles for WXXM 1.1
- CSML 3 Design principles + directly re-usable generalpurpose data components for WXXM 2.X?

Layered WXXM 1.1 Data Model

CSML design principles

- 'Soft-typing' on observable phenomenon
- Geometry and topology of sampling is a crucial classifier
- Integration with existing technology (e.g. needs to co-exist with CF-netCDF)
- Leverage OGC / ISO TC211 models where possible

Weak vs. Strong Typing

Weak-typing example. Schema has relatively few elements and can represent multiple types of measurements. External vocabularies required.

Strong-typing example.
Schema fully defines a
particular data type. One type
required for each measurement
type. External vocabularies not
required.

ISO/DIS 19156

- 'Geographic information Observations and measurements'
- Draft ISO version of OGC's Observations
 & Measurements 1.0
- Submitted as ISO DIS by editor (Simon Cox) 18 March
 - Only non-technical amendments allowed now
- Schemas being finalised within OGC (O&M SWG): OGC document 10-025

Observation & Measurements Model

- An observation is an event that estimates an observed property of some feature of interest using a specified procedure and generates a result.
- Ok, I sorta get that, but how do I use O&M for weather data?
- The ISO version of O&M refines the model to better support earth science needs, and codifies some best practices

O&M Sampling Features

- Often, the feature-of-interest is not a (whole)
 domain feature rather it is a sampling feature
 - "Sampling features are artefacts of an observational strategy, and have no significant function outside of their role in the observation process. ... A sampling feature is intended to sample some feature of interest in an application domain." (ISO/DIS 19156 §8.1.2)

Example

Radar Scan Volume = Sampling Feature

Microburst Detection(s) for scan = Result Feature(s)

Coverage Observations

- Observation of a set of properties that vary over the (spatiotemporal) extent of a feature
 - Result is a coverage
 - A GRIB or NetCDF file containing observational data for the CONUS is an example of a *grid coverage*

Bringing it together: Sampling Coverage Observation

- Described in ISO/DIS 19156 Best practices in use of observation and sampling models
- This is the basic CSML v3 pattern
- CSML v3 leverages ISO version of O&M directly, unlike CSML v2 which was aligned with O&M
- There are still some gaps for CSML to fill in, particularly w/respect to sampling time axes

Sampling Coverage Observation

Consistency constraints

- feature of interest is a spatial sampling feature
- observed property consistent with range type of coverage result
- shape of sampling feature contains spatial elements of coverage domain
- phenomenon time contains temporal elements of coverage domain

Spatial sampling feature is spatial!

 "Properties observed on sampling features may be timedependent, but the temporal axis does not generally contribute to the classification of sampling feature classes" (ISO/DIS 19156 §9.1)

CSML v3

 Conceptual model «Feature Type» General Feature Observation Core::OM_Observation Instance:: phenomenonTime: TM_Object 3FI_PropertyType «FeatureType» resultTime: TM Instant Sampling Core: validTime: TM_Period [0..1] SF_SamplingFeature resultQuality: DQ Element I0..*1 parameter: NamedValue [0.7] «FeatureType» CV_Coverage Observation Core.. **OM Process** Discrete Coverages::CV_DiscreteCoverage «FeatureType» :CV Coverage coverageObservation:: domainExcent: EX_Extent [1..*] OM DiscreteCoverageObservation rangeType: RecordType commonPointRule: CV CommonPointRule «FeatureType» Sampling Coverage Observation::SamplingCoverageObservation «FeatureType» Domain spatial SamplingFeature: SF_SpatialSamplingFeature Direct use of O&M observedProperty shall be consistent with result range Type} {featureOfInterest.shape shall be consisten: with spatial components of result domain} {phenomenonTime shall be consistent with temporal component of result.domain} «FeatureType» CSMLObservation CSML specializations of O&M model to cFeatureType> «FeatureType» «Feature Type» samplingSurface:: samplingPoint: samplingCurve: fully specify time-related semantics for SF_SamplingSurface SF SamplingPont SF_SamplingCurve SF_SamplingSolid CSML supported types «FeatureType» «FeatureType» «Feature Type» «Feature Type» «Feature Type» «FeatureType» Scanning Radar Grid GridSeries Point Point Series «FeatureType» Section «FeatureType: «FeatureType» Trajectory Profile Series

«Feature Type»

CSML v3 Feature Types

CSML v3

XML schemas

- Following model-driven approach based on GML encoding rules & ISO 19156
- O&M schemas being finalised (OGC 10-025)
- Nearly all coverages results based on constraining ISO 19123 CV_DiscreteGridPointCoverage in different ways
 - for encoding, use gml:ReferenceableGridCoverage (07-112r3 approved by GML SWG)
- Available shortly!

netCDF Common Data Model / CF Point Observations

- Key objective of CSML v3: alignment with CDM / CF
 - [Feb 2007] CSML v2
 - [Jun 2008] CDM Feature Types
 - [Oct 2009] CF Point Observation conventions
 - [mid-2010] CSML v3:

CSML	CF/CDM
Point	Point
PointSeries	StationTimeSeries
Trajectory	Trajectory
Profile	Profile
ProfileSeries	StationProfile

CSML	CF/CDM
Swath	Swath
ScanningRadar	StationaryRadialSweep
Section	Collection of Profiles
Grid	Grid (single time)
GridSeries	Grid

CSML roadmap

- Immediate
 - OGC Discussion Paper
- Next
 - Best Practice Paper 'owned' by OGC Met Ocean Domain Working Group?
 - neutral branding...
 - complete harmonisation (i.e. new names) with CF/CDM?

Issues

- Observed property
 - Ongoing discussion (SWE.SWG, GML.SWG) how best to represent semantic properties (SKOS, gml:ReferenceType, gml:CodeType, URIs vs. URNs etc.)
- Observation procedure (OM_Process)
 - Mandatory (can't have an observation without a procedure!) Can it be made nillable?
- Practical application
 - Code implementation
 - WFS, WCS, SOS, ...

Weather Model Convergence?

CSML work is proving to be of significant benefit to WXXM community!

hnology Facilities Counci