AIXM 5 Temporality Model (Abridged)

Washington D.C. | October 10 - 11, 2007

AIXM Class | 2007

Eddy Porosnicu EUROCONTROL

An Example: Navaid frequency change

Imagine that AML Navaid undergoes an upgrade that changes its frequency from 112.0 MHz to 113.2 MHz...

Building the temporality model

- Time is essential for Al
- For operational reasons, distinction between:
 - permanent changes
 - temporary status
- Two levels
 - Life of the feature
 - Changes in properties

Time varying properties

The basic Time Slice model

The basic Time Slice model

The basic Time Slice model

The basic Time Slice model UML

validTime = the time period for which the Time Slice is valid

featureLifetime = property of the feature; it indicates the date and time when the feature was created and the date and time when it will cease...

Temporary events

Temporary events

- Two kinds of Time Slices
 - Baseline = describes the feature state (the set of all feature's properties) as result of a permanent change;
 - Temporary Delta =
 describes the transitory
 changes of a feature state
 during a temporary event.

The model up to this point BASELINE & TEMPDELTA

- Compliant with the requirements for
 - Completeness all temporal states must be representable;
 - Minimalism use of minimal number of elements;
 - Consistency no reuse of elements with different meaning;
 - Context-free meaning of (atomic) elements independent of context; no functional dependency of (atomic) elements at the data encoding level;
- But, a bit inconvenient for real applications...