
AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 1 of 28

AIXM

Temporality Model

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 2 of 28

Aeronautical Information Exchange Model
(AIXM)

Copyright: 2007 - EUROCONTROL and Federal Aviation Administration

All rights reserved.

This document and/or its content can be download, printed and copied in whole or in part, provided that the above
copyright notice and this condition is retained for each such copy.

For all inquiries, please contact:

Brett BRUNK - brett.brunk@faa.gov

Eduard POROSNICU - eduard.porosnicu@eurocontrol.int

Part

Edition
No.

 Part Edition

Issue Date

Part

Author

Reason

for Change

0.1 Draft 24 APR 2007 Design Team Initial Draft

0.2 Draft 04 JUN 2007 Design Team Updated after discussions in St. Louis and
Frankfurt.

0.3 Draft 10 JUN 2007 Design Team Updated after comments from AIXM FG #8
Meeting and from Edna.

0.4 Proposed 15 JUL 2007 Design Team Removed “Static” Time Slices from the
model. Re-organised the presentation of the
different kinds of Time Slices.

0.5 Proposed 12 NOV 2007 Design Team Clean-up for first public version.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 3 of 28

Table of Contents

1. The need for a temporality model...4

2. Building the Temporality Model ..5
2.1 (step 1) Time varying properties ..5
2.2 (step 2) The Time Slice model...6
2.3 (step 3) Temporary events – digital NOTAM ...7
2.4 (step 4) Current Status - SNAPSHOT Time Slices...9
2.5 (step 5) Data exchange – need for PERMDELTA Time Slices..9
2.6 (step 6) Data exchange – corrections..11
2.7 Temporality applied to the Abstract Model..13

3. Application aspects..15
3.1 BASELINE Time Slices with undetermined end of validity..15
3.2 “Delta” for complex properties ..17
3.3 “Delta” for multi-occurring properties ...18
3.4 Identifying the feature affected by a DELTA Time Slice ..18
3.5 Canceling a Time Slice ..19
3.6 Overlapping TimeSlices and corrections...20
3.7 Other implementation considerations ...21
3.8 Business rules ...21

5. Usage examples ...22
5.1 Navaid example..22
5.2 Feature creation (commissioning)..23
5.3 Permanent change ...24
5.4 Digital NOTAM ...24
5.5 End of life (decommissioning) ..25
5.6 Complete feature histories ..26

6. References ...28

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 4 of 28

1. The need for a temporality model

Time is an essential aspect on the aeronautical information world, where change notifications are usually
made well in advance of their effective dates. Aeronautical information systems are requested to store
and to provide both the current situation and the future changes. The expired information needs to be
archived for legal investigation purposes.

For operational1 reasons, a distinction is usually made between:

o permanent changes (the effect of which will last until the next permanent change or
until the end of the lifetime of the feature) and

o temporary status (changes of a limited duration that are considered to be overlaid on the
permanent state of the feature).

A temporary change includes the concepts of overlay and reversion. The temporary change is overlaid
on the permanent feature state. When the temporary change ends, the temporary changes no longer
apply and we revert back to the permanent feature state.

Note that, from an operational point of view, “temporary status” also includes the concept of “temporary
features”. However, from the AIXM point of view, temporary features are in no way different from
normal features. The feature is created and withdrawn, just that the life span is shorter than usual.

In order to satisfy the temporal requirements of aeronautical information systems, AIXM must include
an exhaustive temporality model, which enables a precise representation of the states and events of
aeronautical features. In particular, this shall enable the development and the implementation of digital
NOTAM. By digital NOTAM we mean replacing the free text contained in a NOTAM message with
structured facts, which enable the automated processing of the information.

A general temporal model should be uniformly applied to all aeronautical feature types and the
temporality concept should be abstracted from the task of modeling object properties. At the conceptual
level, the model should describe the temporal evolution of the features, as they occur in the real world.
This shall be done in compliance with the following rules:

o Completeness - all temporal states must be representable;
o Minimalism - use of minimal number of elements;
o Consistency - no reuse of elements with different meaning;
o Context-free - meaning of (atomic) elements independent of context; no functional

dependency of (atomic) elements at the data encoding level;

The data exchange specification shall support the conceptual model. In addition, convenience elements
(“views”) may be introduced in the data exchange specification in order to facilitate the operations. This
means that the data exchange specification may deviate from the “minimalism” rule.

1 For example, systems that produce printed aeronautical documentation (AIP, charts) tend to ignore
temporary status information; only the static data is represented on such printed products.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 5 of 28

2. Building the Temporality Model

2.1 (step 1) Time varying properties

There are two levels at which aeronautical feature instances are affected by time:
o Every feature has a start of life and an end of life;
o The properties of a feature can change within the lifetime of the feature; this includes

the possibility for a property to not be defined over a time period.

The start of life and the end of life may also be considered as feature properties (attributes). This gives
the following high-level list of properties for any AIXM feature:

o a global unique identifier;
o the start of life (date and time);
o the end of life (date and time);
o attributes and associations that qualify, quantify or relate in some form that feature.

It is considered that any feature property may change in time, except for the global unique
identifier. This is a key assumption of the AIXM Temporality model.

The first step in the construction of the AIXM temporality model is represented by the diagram below,
which shows the values of a feature’s properties (P1, P2, … P5) along a timeline.

Figure 1

Discussion: Can the start of life and the end of life properties of a feature vary in time?
At first sight, probably not. A feature is created at a moment in time and will cease to exist at another
moment in time. But this is true only when considering the already known history of a feature. When
exchanging data about the future, there might be situations where the start/end of life is planned to
happen at a certain date/time and this date might change.
Therefore, we have to include the start/end of life of a feature in the time varying properties list.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 6 of 28

2.2 (step 2) The Time Slice model

The temporality model adopted2 by AIXM describes feature events and states. An event is a change of
one or more feature properties. A state is the feature property set valid over a time period. An event
occurs at the transition between states. In the diagram below events are located at the vertical cuts
while states are represented as the feature property set between events.

Figure 2

In order to describe the feature properties during states and events, the time varying properties of every
feature are encapsulated in a container called “Time Slice”. The history of the feature is described with
“state” Time Slices, each containing the values of the time varying properties between two consecutive
changes (events). Each Time Slice has maximum one value for each property and one specified validity
period. In an UML diagram, the basic Time Slice concept is represented as below:

AIXMFeature
identifier : UUID

AIXMFeatureTimeSlice
validTime
featureLifetime
property1
property2
property3
...

1..* +time varying properties1..*

validTime = the time period for which the
Time Slice is valid

featureLifetime = property of the
feature; it indicates the date and time
when the feature was created and the
date and time when it will cease...

Figure 3

2 The AIXM Time Slice model is based on the ISO 19136 (GML) timeslice concept.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 7 of 28

Discussion: Why not a validity period for each property?
Instead of grouping property values in Time Slices, another approach could be a temporal model where
every property gets it own validity period.
The first argument against this approach is that, in general, the properties of a feature do not change
independently from each other. There exist operational constraints that link the values of some
properties with the values of other properties. Therefore, several properties would have anyhow to be
grouped together, with a common validity period.
The second reason is that changes in the aeronautical world are regulated by the AIRAC cycle. This
imposes that significant operational changes occur at predefined dates, in order to ensure the
predictability of the aeronautical environment and to allow time for the users to accommodate with the
changes. In general, aeronautical features have stable property values between AIRAC cycle dates.
Therefore, grouping together the properties in Time Slice with a unique validity period is a simplified
temporal model, which supports well the operational requirements.

2.3 (step 3) Temporary events – digital NOTAM

Aeronautical features may be affected by temporary events, such as a navaid being out of service, a
runway being closed, a restricted area becoming active, etc. All such events generate temporary changes
in the values of one or more feature properties. At the end of the temporary event, the values of these
properties are reversed to their static values.

In order to model temporary events, we need to specialize the basic temporality model defined at step 2
by differentiating between two kinds of Time Slices:

• Baseline = a kind of Time Slice that describes the feature state (the set of all feature’s
properties) as result of a permanent change.

• Temporary = a kind of Time Slice that describes the transitory overlay of a feature state during a
temporary event.

From a “payload” point of view, there exists an essential difference between Baseline and Temporary
Time Slices:

o A Baseline Time Slice includes the values of all time varying feature properties that are
defined for the time of validity of the Time Slice; for example, in the diagram below,
TS2 will include the values of p1, p2, p4 and p5;

o A Temporary Time Slice includes just the values of the properties that are temporarily
changed; for example, in the diagram below, TS “temp” will include just p4=”value w”.
For this reason, temporary Time Slices are called “Temporary Delta” Time Slices.

Note: a temporary change could also consist in a feature property becoming temporarily
undefined (no value). For this purpose, feature properties can also get a ‘nil’ value.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 8 of 28

Figure 4

One reason for temporary Time Slices to contain strictly the modified properties is to avoid confusions
that could result from overlapping temporary events. When several temporary delta overlap in time,
complicated rules would be necessary in order to decide which values to include for not affected
properties. Should the values of the baseline Time Slice be included? Or should the other temporary
changes be considered? Therefore, the model is clearer if only the affected properties are included in
Temporary Delta Time Slices.

With regard to the UML model, as the Temporary Delta Time Slices need to be distinguished from the
baseline ones, an additional attribute is necessary in the AIXMFeatureTimeSlice class. This is named
“interpretation” and indicates the type of Time Slice - BASELINE or TEMPDELTA, as shown in the
figure below.

Figure 5

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 9 of 28

The essential benefit brought by TEMPDELTA Time Slices is that they enable the encoding of “digital
NOTAM”. A TEMPDELTA Time Slice will contain the values of all feature properties that are
overlaying for a limited time period the baseline values.

Discussion: Why not considering the temporary change as a sequence of two permanent changes?
Using a Time Slice model with BASELINEs only, the interval TS2 would have to be split into 3 new Time
Slices, for example TS2a, TS2b and TS2c. In this approach, the temporary situation would be modeled
as a sequence of two permanent changes. The disadvantage of this solution is that the information about
the temporary nature of the value “w” would be lost. There exist aeronautical applications, such as
charting and AIP production, which normally ignore the temporary changes. Such applications need to
know if a value is temporary or part of the baseline.
Also, temporary events, such as the activation of a restricted area, have a life of their own: first the
activation is requested, than planned for a time interval maybe different from what was requested, than
active for maybe a shorter time than planned, etc. In order to correctly model the life of temporary
events, they need to be modeled as such and not hidden behind fictitious permanent changes.

2.4 (step 4) Current Status - SNAPSHOT Time Slices

The temporality model described up to this point complies with the rules for completeness, minimalism,
consistency and context-free mentioned at the end of section 1. Using BASELINE and TEMPDELTA
Time Slices it is possible to describe the temporal evolution of the time varying properties of
aeronautical features, covering both permanent states and temporary events.

However, the model is slightly inconvenient for a real life implementation, because it lacks the
possibility to communicate the current status of a feature. For convenience, we need an additional kind
of Time Slice to be included in the model. This will be named “SNAPSHOT” and will carry the result of
merging the effective BASELINE information with all overlaying TEMPDELTA that are valid at a that
moment in time. Typically, a SNAPSHOT Time Slice will have a Time Instant as validTime.

• SNAPSHOT = A kind of Time Slice that describes the state of a feature at a time instant, as
result of combining the actual BASELINE Time Slice valid at that time instant with all
TEMPDELTA Time Slices that are effective at that time instant.

2.5 (step 5) Data exchange – need for PERMDELTA Time Slices

Another kind of Time Slice that will be introduced for convenience is in support to systems that need to
notify the clients about data updates. There exist two types of applications:

1. “Pull” Systems - provide an interface by which a client can query the aeronautical information
and extract the results of the query;

2. “Push” Systems - generate and transmit to the client notifications about aeronautical information
changes.

For “push” systems, it is difficult to use only these three kinds of Time Slice for communicating
(generating and transmitting) information about the future. For example, how to communicate
information about the end of life (decommissioning) of a feature?

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 10 of 28

Using BASELINE Time Slices for this purpose would require communicating an ‘update’ of at least the
last sent Time Slice, with an updated value of the ‘endOfLife’ property. This would also require
interpretation rules such as “if the endOfLife is equal with the end of validity of the Time Slice, then this
means that the feature is permanently withdrawn”. The postponement of a withdrawn, which is
operationally possible, would require a second update of the endOfLife, which might become
complicated to interpret.

A more convenient solution is to include in the temporality model a Time Slice that represents
permanent change events. This will be called Permanent Delta (PERMDELTA).

• PERMDELTA = A kind of Time Slice that describes the difference in a feature state as result of
a permanent change.

The end of life can now be communicated with a PERMDELTA Time Slice in which the endOfLife gets
a value, while all specific feature properties become NIL. Symmetrically, the start of life can also be
communicated with a PERMDELTA Time Slice, in which the startOfLife property and the other feature
properties get their initial values. Being modeled as formal events, the start of life and the end of life can
relatively simply be postponed or advanced (this requires a mechanism for updating an ‘event’ Time
Slice, which will be discussed later in this paper).

A second advantage of PERMDELTA Time Slices is that client systems do no longer need to compare
the previously received BASELINE Time Slice with the new one in order to detect the changed
attributes. This process may be time consuming and even error prone. The data originator is the best
positioned to know the list of changed properties and the PERMDELTA Time Slice gives the possibility
to communicate this information to interested clients. This facilitates the implementation of systems that
are not interested in changes of certain feature properties. For example, charting applications - a
PERMDELTA affecting properties that are not charted will likely to be ignored.

From a conceptual point of view, a PERMDELTA Time Slice occurs at the edge between any two
consecutive BASELINE Time Slices and it contains values strictly for the changed properties.

All these kinds of Time Slices are described in Figure 6.

Conceptually, there exists a direct dependence between PERMDELTA and BASELINE Time Slices.
However, this does not mean that the BASELINE Time Slice needs to be effectively instantiated after
each PERMDELTA. In an implementation, it is possible, for example, to accumulate PERMDELTA
Time Slices. The instantiation of a new BASELINE might occur, for example, after each third
PERMDELTA affecting a feature.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 11 of 28

Figure 6

2.6 (step 6) Data exchange – corrections

In the aeronautical world we need to communicate information about events that are planned to take
place in future. Inevitably, the reality might be different from the initial planning and it might be
necessary to update the already communicated information.

As in AIXM the properties of a feature are encapsulated in Time Slices, this means that we need a
mechanism for updating/correcting a previously communicated feature Time Slice. First, a key is
necessary for the identification of the Time Slice concerned. For this purpose, a “sequence number”
attribute is introduced in the model, playing the role of unique identifier for each Time Slice inside a
feature.

If necessary to correct a previously communicated Time Slice, an update of the Time Slice will be
provided, having the same sequence number but a higher correction number. As a consequence, if there
exist more than one Time Slice with the same sequence number related to a given feature, the one with
the higher correction number will be considered valid.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 12 of 28

The UML representation of the final AIXM 5 Feature Time Slice model is provided below:

Figure 7

To summarise, the following Time Slice types are used in the AIXM:
o BASELINE = a kind of Time Slice that describes the feature state (the set of all feature’s

properties) as result of a permanent change.
o PERMDELTA = A kind of Time Slice that describes the difference in a feature state as

result of a permanent change.
o TEMPDELTA = a kind of Time Slice that describes the overlay of a feature state during a

temporary event.
o SNAPSHOT = A kind of Time Slice that describes the state of a feature at a time instant, as

result of combining the actual BASELINE Time Slice (valid at that time instant) with all
eventual TEMPDELTA Time Slices that are effective at that time instant.

Discussion: What was the temporality model of past AIXM versions?
AIXM 3.x and 4.x provide limited temporality support. It is possible to encode the feature state at a point
in time (AIXM-Snapshot message) and to communicate baselines (AIXM-Update). AIXM 3.x and 4.x do
not support the direct encoding of the temporary status information; it would have to be done as a
sequence of two baselines, one changing the properties and the second one reverting to the previous
situation. But this does not allow distinguishing between real permanent changes and temporary status
information.
In addition, AIXM 3.x and 4.x embed temporality in the exchange message rather than in the
aeronautical features. Consequently temporality becomes a property of the message rather than the
aeronautical features. The message properties describe how receiving systems should interpret the
message content.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 13 of 28

2.7 Temporality applied to the Abstract Model

The UML model contains a set of abstract AIXM classes that are used as templates for the features and
objects defined in AIXM. When applying the Time Slice concept, as described in the previous
paragraphs, this triggers the split of every UML class that represents a feature into a main class and a
“FeatureTimeSlice” class, as shown in the following diagram.

The UML diagram shows how each and every <<feature>> inherits from the abstract AIXMFeature
class. The concrete features are described by TimeSlices which are composed of properties. The
TimeSlice inherits from the abstract AIXMFeatureTimeSlice class.

The diagram also shows that each AIXM Feature is described by FeatureMetadata and each TimeSlice is
described by FeatureTimeSliceMetadate. Finally, each TimeSlice may contain an Extension. The

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 14 of 28

Extension mechanism allows each user of AIXM 5 to define and use his own specific attributes and
classes, in addition to the core AIXM ones.

The diagram above is quite complex. If applied to the whole set of AIXM classes, it might undermined
the readability of the UML diagrams. Therefore, the Design Team has decided to provide a
simplified UML model, without visible inheritance of all features from the abstract AIXMFeature
and without visible SomeFeatureTimeSlice classes. However, the split and into
SomeFeatureTimeSlice classes is assumed to exist, when converting from the UML model to the XML
Schema of AIXM.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 15 of 28

3. Application aspects

3.1 BASELINE Time Slices with undetermined end of validity

The frequency of permanent changes in the aeronautical information domain is typically measured in
AIRAC cycles. When a permanent change is communicated, usually, it is unknown when the next
permanent change will take place. Therefore, it triggers a BASELINE with an unknown end of validity.
This BASELINE will cover the period until the next permanent change. Implicitly, when the next
change occurs, the previous BASELINE gets an end of validity and needs to be updated/corrected.

The situation may be represented as in the diagram below. The first BASELINE, created at the start of
life of the feature, initially has an unknown end of validity. When the permanent change “PERMDELTA
2” occurs, the validity of the initial BASELINE ends and a new BASLINE takes over. To completely
represent the history of the feature, a corrected version of BASELINE 1 is instantiated, this time with a
known end of validity.

Figure 8

Extended to the complete history of the feature, the correction of the initially communicated
BASELINES can be represented as in the following diagram.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 16 of 28

BASELINE 7
as initially communicated

BASELINE 5
as initially communicated

BASELINE 2
as initially communicated

BASELINE 4
as initially communicated

temporary a

Feature
Properties

BASELINE 3
as initially communicated

BASELINE 6
as initially communicated

BASELINE 8
as initially communicated

PERMDELTA 1
(start of life) PERMDELTA 2 PERMDELTA 3

PERMDELTA 4
PERMDELTA 5 PERMDELTA 6

PERMDELTA 7
PERMDELTA 8

PERMDELTA 9
(end of life)

SNAPSHOT

Historical
validity

BASELINE 1

TEMPDELTA

Time

BASELINE 1
correction 1

BASELINE 1
as initially communicated

BASELINE 2
 correction 1

BL3
cor 1

BL4
corr1

BASELINE 6
correction 1

BL7
corr 1

BL8
corr 1

BASELINE 8
correction 1

Figure 9

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 17 of 28

3.2 “Delta” for complex properties

Many AIXM features have complex properties that are made of zero or more component classes
(represented as aggregated classes in the UML model, 0..*). For example, many features have an
associated Timetable, which is “composedOf” zero or more Timesheet classes:

Timesheet

timeReference : codeTimeRef
startDate : dateMonthDay
endDate : dateMonthDay
day : codeDay
dayTil : codeDay
startT ime : time
startEvent : codeTimeEvent
startT imeRelativeEvent : timeLap
startEventInterpretation : codeCombTimeEvent
endTime : time
endEvent : codeTimeEvent
endTimeRelativeEvent : timeLap
endEventInterpretation : codeCombTimeEvent

(from Time Management)

<<object>>

Timetable

workingHours : codeTypeTimetable
(from Time Management)

<<object>>

1

0..*

1

0..*

composedOf

AirportHeliport
designator : codeIdAdHp
name : txtName
locationIndicatorICAO : codeLocIndIcao
designatorIATA : codeLocIndIata
type : codeTypeAdHp
private : codeYesNo
referencePointDescription : txtDescr
fieldElevation : valDistVer
fieldElevationAccuracy : valDistVer
geoidUndulation : valDistVer
verticalDatum : codeVerticalDatum
cityServed : txtName
locationDescription : txtDescr
magneticVariation : valAngleMagVar
dateMagneticVariation : dateYear
magneticVariationChange : valAngleMagVarC...
referenceTemperature : valT
altimeterCheckLocation : txtDescr
secondaryPowerSupply : txtDescr
windDirectionIndicator : txtDescr
landingDirectionIndicator : txtDescr
transitionAltitude : valDistVer
transitionLevel : valFl

<<feature>>

1

0..1

1

0..1
openBy

Figure 10

The question is: what should PERMDELTA or TEMPDELTA Time Slices contain for such situations?

By definition, “delta” Time Slices shall contain strictly the values of the affected feature properties and
this rule applies only to features. Objects are consider complex types of a feature property and have to be
included in full in a “delta” Time Slice, if the encapsulating feature property is changed. This will be
explained further down with an example.

Feature properties are all the feature attributes and all the associations for which the feature has the
navigability (indicated as an arrow pointing from the feature class towards another class). For example,
in the previous class diagram3, the properties of the AerodromeHeliport feature are all attributes
(designator, name, …, transitionLevel) and also the “openBy” association. The openByTimetable
property of the Aerodrome/Heliport is a complex one, composed of several Timesheets. If a temporary
or permanent change occurs inside the Timetable (for example, a modification of one of its composing
Timesheets), then the modified Timetable shall be included in full in the TEMPDELTA or
PERMDELTA Time Slice.

3 Please Note that in AIXM the AirportHeliport has more attributes and associations than
shown on this simplified diagram.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 18 of 28

3.3 “Delta” for multi-occurring properties

A similar rule applies for feature properties that can occur multiple times. In UML, such properties are
encapsulated in an Object, which is related with the feature class by a 0..* association. For example, an
AerodromeHeliport may serve 0..* Cities, as indicated in the following diagram. This means that the
property “serves” of the AerodromeHeliport feature is potentially multi-occurring.

Figure 11

The rule is that, in a PERMDELTA or TEMPDELTA Time Slice, multi-occurring properties shall be
provided with all occurrences included. Therefore, if an AerodromeHeliport served, for example, two
cities and this needs to be permanently changed to three cities, all the three servesCity properties have to
be included in a PERMDELTA.

3.4 Identifying the feature affected by a DELTA Time Slice

A Time Slice is always encoded as child element of a feature. As every AIXM feature has
‘gml:identifier’ property, this should be sufficient for this purpose. This is supposed to be a global
unique identifier (of type UUID), which provides an unambiguous key for every AIXM Feature.

However, the global unique identifiers are likely to not exist for some time. In this situation, there are
two possibilities:

o Either use the gml:identifier property for encoding a local unique identifier (an artificial
key), specific to the data originator. In this case, the PERMDELTA and TEMPDELTA
Time Slices can be operationally received only from the same originator who has
provided the BASELINE data. Using PERMDELTA/TEMPDELTA from another data
source would inevitably break the chain, as different identifiers would be used.

o Or, in addition to the PERMDELTA or TEMPDELTA Time Slice, include in the AIXM
file a “state” Time Slice for each feature (such as BASELINE or STATIC). Thus, the
properties of the state Time Slice can be used as natural identification. The client will
have to query his local system and identify the feature that has the same values at that
moment in time, thus being identified as the target for the update.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 19 of 28

3.5 Canceling a Time Slice

For aeronautical information systems that work in “push” mode, the primary means for generating and
providing information about a change is by PERMDELTA and TEMPDELTA Time Slices. The
question is what procedures shall be applied in the case of a change in the planning, such as:

o Abandoning the commissioning/decommissioning of a feature (before its effective date)
o Abandoning a permanent change (before its effective date)
o Abandoning a temporary change (before its effective date)

It was already discussed (see 2.6) that the postponement/advancement of an event requires a correction
to a TimeSlice, using the sequenceNumber property as key for identifying the Time Slice concerned.
The same property will be used for identifying the PERMDELTA or TEMPDELTA that needs to be
abandoned. To clearly indicate that the change contained in the TimeSlice has been canceled, the
gml:validTime property will be empty and it will have the nilReason attribute set to “inapplicable”. For
example, if a PERMDELTA for SomeFeature has been provided, with sequenceNumber “23”, in order
to cancel it, a second PERMDELTA with the same sequenceNumber and a higher correctionNumber has
to be issued, as below

<SomeFeatureTimeSlice gml:id="ID001">
<gml:validTime nilReason="inapplicable">
</gml:validTime>
<interpretation>PERMDELTA</interpretation>
<sequenceNumber>23</sequenceNumber>
<correctionNumber>1</correctionNumber>

</SomeFeatureTimeSlice>

Note that this Time Slice cancellation does not affect ‘pull’ systems, such as Web Services or WFS,
where the system provides the most current information, following an on-line request by the client. The
client is not supposed to refer to or compare the results with the results of a previous query.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 20 of 28

3.6 Overlapping TimeSlices and corrections

The sequenceNumber and correctionNumber are used to resolve and interpret overlapping timeSlices.
Consider the scenario shown in the figure below where a Feature’s Status property is changed repeatedly
over several overlapping time intervals. Each temporary change receives a sequenceNumber. In the
example, one of the Time Slices is corrected, leading to a duplicated sequenceNumber and different
correctionNumber.

Feature Time Line

Status = ON

Status = TEST

Status = OFF

Status = MAINT

(BASELINE, sequenceNumber = 1)

(TEMPDELTA, sequenceNumber = 1)

(TEMPDELTA, sequenceNumber = 2)

(TEMPDELTA, sequenceNumber = 1,
correctionNumber = 1)

Status as it would appear in a
SNAPSHOT Time Slice

1
ON

2
MAINT

3
OFF

4
ON

Figure 12 Example of TimeSlice corrections

At the edges of each temporal event we can identify transitions to different feature versions. The
combination of Time Slice type and sequenceNumber can be used to unambiguously identify the value
of the Feature’s Status property at each moment in time.

To determine the value of a property at a given time or over a given time interval the following rules
should be used:

1. Identify the BASELINE that is valid at that moment in time, by looking at it’s validTime. If
several exist, they should all have the same sequenceNumber and different correctionNumbers.
Take the one with the highest correctionNumber;

2. Identify all TEMPDELTAS that are effective at the specified time ;
3. Sort the TEMPDELTAs by increasing sequenceNumber;
4. Apply the TEMPDELTAs to the feature from low sequenceNumber to high sequenceNumber.

a. When two or more deltas have the same sequenceNumber apply the delta with the
highest correctionNumber.

The possibility to resolve overlapping TEMPDELTAs using the sequenceNumber and
correctionNumber shows how cancellations and corrections can be communicated. In this example,
TEMPDELTA sequenceNumber = 1 is initially used to communicate that the feature Status = test.
Later, a Time Slice correction is transmitted using the same sequenceNumber = 1 but with a
correctionNumber = 1; it corrects the feature state to Status = MAINT.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 21 of 28

3.7 Other implementation considerations

The conceptual temporal model described in the previous section provides considerable flexibility for
systems that implement temporality. A system that tried to fully implement the AIXM temporality model
would be very complex. However there is no requirement for systems implementing AIXM to support
all kinds of Time Slices. For example:

o Some systems may only store BASELINE Time Slice data and disregard any temporary
changes. Examples include AIP publication, paper chart publishers and ARINC 424
based systems.

o Some systems may only transmit and store temporary changes. Examples include the
conventional NOTAM system. However, such system need to refer to source of
BASELINE data.

o Some systems may only require periodic snapshots providing the current state of the
system. An example is a passive monitoring system designed to report system status at
selected time intervals.

o Some systems may want a new “snapshot” after every change without making a
distinction between a temporary and a permanent change. Examples include traffic
management and flight plan processing systems.

o Some systems may be developed that can process and interpret all of the temporal
components and provide users with Baseline, Deltas and Snapshot Time Slices at any
given moment in time.

AIXM contains a complete temporal model; however, as the examples illustrate it is the responsibility of
interacting systems to negotiate specific temporal data exchange requirements as well as to integrate
temporality into their internal subsystems.

3.8 Business rules
- TO BE DEVELOPED -
For example:

o TEMPDELTA Time Slices cannot change start of life and end of life
o PERMDELTA shall have a TimeInstant as validTime
o Etc.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 22 of 28

5. Usage examples

5.1 Navaid example

Figure 13 illustrates the temporal model by showing a transmission frequency change for a navigation
aid (VOR AML, from 112.0 MHz to 113.2 MHz). Normally, this change should occur at an AIRAC
cycle date. Usually, the change requires the navaid to be out of service for a certain time, then to be on
test on the new frequency. The temporary status is communicated at present through NOTAM messages.

VOR navaid: id = AML
Status = Operational, Freq = 112.0 MHz

VOR navaid: id = AML
Status = Operational, Freq = 113.2 MHz

NOTAM
Status = Offline

for upgrades
NOTAM

Status = on test,
do not use

Snapshot 1

Frequency upgrade
coordinated to be
effective next cycle

TempDelta 1
TempDelta 2

Permanent
Delta 2

Freq = 113.2 MHz

Baseline 1
Baseline 2

Permanent
Delta 1

Snapshot 2 Snapshot 3 Snapshot 4
Figure 13

Based on this diagram we can identify the following temporal components:

o The diagram shows two BASELINE Time Slices. The first baseline has a NAVAID
frequency of 112.0 MHz and is valid since some time in the past; the second baseline
has the new frequency of 113.2 MHz and is valid starting from the AIRAC cycle date.

o A PERMDELTA can be used to describe the permanent state change, which is the AML
VOR frequency change. For completeness sake, the previous PERMDELTA that has
preceded the first BASELINE (1) is also shown.

o Each transitory event can be expressed as a TEMPDELTA that changes the Operational
Status of the navaid and eventually the frequency.

o Based on the PERMDELTA and the TEMPDELTA delta Time Slices shown in the
diagram, four different versions for the “current status of the feature” may exist. Each
“current status” version begins and ends at the boundary of a Permanent or Temporary
Delta and may be presented as a Time Slice of type SNAPSHOT.

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 23 of 28

Depending on the temporal implementation employed by the exchanging systems, different methods can
be used to communicate feature changes. In the interest of global standardization, the rest of this section
provides some recommendations. They are relevant especially for “push” type applications, which
generate and provide notifications in the form of TEMPDELTA and PERMDELTA Time Slices.

5.2 Feature creation (commissioning)

The start of life of a feature (also known as “commissioning”) is modelled as a PERMDELTA which
gives an initial value to the startOfLife property and to all other feature properties that are defined. The
validTime of the PERMDELTA shall be the effective date and time when the feature is commissioned.

Optionally, if this has been requested by the user, a BASELINE Time Slice, containing the same
property values as the PERMDELTA (as they are the result of the PERMDELTA) may also be included.
The validTime of the BASELINE shall be a timeInterval with the end “undetermined”.

TimeSlice
- validTime = timeInstant…
- interpretation = PERMDELTA
- sequenceNumber = 1
- startOfLife = same timeInstant…
- property 1
- property 2
- property 3
- property 4
- property 5

TimeSlice
- validTime = timeInterval with

undetermined end
- interpretation = BASELINE
- sequenceNumber = 1
- startOfLife = same timeInstant…
- property 1
- property 2
- property 3
- property 4
- property 5

TimeSlice
- validTime = timeInstant…
- interpretation = PERMDELTA
- sequenceNumber = 1
- startOfLife = same timeInstant…
- property 1
- property 2
- property 3
- property 4
- property 5

Feature
 gml:identifier

Feature
 gml:identifier

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 24 of 28

5.3 Permanent change

A permanent change is modeled as a PERMDELTA Time Slice, containing all properties that change
their values. The validTime of the PERMDELTA shall be the effective date and time of the change.

Optionally, a BASELINE Time Slice can be included, containing all the properties that have a value as
they result after the PERMDELTA. The validTime of the new BASELINE shall be a timeInterval with
the end “undetermined”.

5.4 Digital NOTAM

A temporary state of a feature is encoded as a TEMPDELTA Time Slice, containing all properties that
temporarily change their values. The validTime of the PERMDELTA shall indicate the start and the end
of effectivity for the temporary state. The end can be undetermined.

TimeSlice
- validTime = timeInterval…
- interpretation = TEMPDELTA
- sequenceNumber = 1
- property 4 (temporary value)

TimeSlice
- validTime = timeInstant…
- interpretation = PERMDELTA
- sequenceNumber = 2
- property 3 (new value)
- property 5 (new value)

TimeSlice
- validTime = timeInterval with

undetermined end …
- interpretation = BASELINE
- sequenceNumber = 2
- startOfLife = timeInstant…
- property 1
- property 2
- property 3 (new value)
- property 4
- property 5 (new value)

Feature
 gml:identifier

Feature
 gml:identifier

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 25 of 28

Optionally, a BASELINE or SNAPSHOT Time Slice can be included (if requested by the client).

5.5 End of life (decommissioning)

The end of life of a feature (also known as “permanent withdrawn” or “decommissioning”) is modelled
as a PERMDELTA which gives a value to the endOfLife.

TimeSlice
- validTime = timeInterval with

undetermined end …
- interpretation = BASELINE
- sequenceNumber = 2
- startOfLife = timeInstant…
- property 1
- property 2
- property 3
- property 4 (the static value!)
- property 5

TimeSlice
- validTime = timeInterval…
- interpretation = TEMPDELTA
- sequenceNumber = 1
- property 4 (temporary value)

TimeSlice
- validTime = timeInstant…
- interpretation = PERMDELTA
- sequenceNumber = 3
- endOfLife = same timeInstant…

Feature
 gml:identifier

Feature
 gml:identifier

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 26 of 28

Optionally, the correction of the latest BASELINE can be included (if requested by the client).

5.6 Complete feature histories

The Timeslice model can be used to transmit history of a feature by transmitting the sequence of changes
that occur to the feature’s property. The feature history can be the past history or future history.

Figure 14 shows an example history of a fictional VOR navigation aid. The navigation aid has the
following events:

• Jan 7, 2006: Commissioned
• Jan 23 – Feb 18, 2006: Temporary frequency change
• Feb 11 – Mar 9, 2006: Temporary offline
• Feb 22, 2006: Change in magnetic variation
• Mar 27, 2006: Change in frequency

TimeSlice
- validTime = timeInterval with the

end as specified by the
PERMDELTA

- interpretation = BASELINE
- sequenceNumber = 2
- correctionNumber = 1
- startOfLife = timeInstant, as

specified by the PERMDELTA
- property 1
- property 2
- property 3
- property 4
- property 5

TimeSlice
- validTime = timeInstant…
- interpretation = PERMDELTA
- sequenceNumber = 3
- endOfLife = same timeInstant…

Figure 14: Fictitious example - history of a VOR navigation aid.

Feature
 gml:identifier

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 27 of 28

Using the Time Slice model we could represent the history of the VOR navigation aid as a series of five
Time Slices, as shown in Figure 15. Three Time Slices are used to represent states and two are used to
represent temporary events. Notice that overlapping events are encoded as separate Time Slices. The
PERMDELTA Time Slices are not shown in this example.

This approach to modeling history is equivalent to the recommended approach for GML 3.2 [4]. In
actual implementations of the AIXM Timeslice mode, communicating histories can lead to very large
messages. These large messages might be a problem for some resource constrained system. Although
implementation issues are outside the scope of this design document we want to point out that the
disadvantage of message size should be weighed against the value of standardization and compliance
with GML. In most situations, the value of standardization may outweigh the loss of message
efficiency.

Figure 15: TimeSlices for the VOR navigation aid history

AIXM 5 Version 5.0 Date:11/15/2007 Temporality Proposal

Page 28 of 28

6. References
1. Aeronautical Information Exchange Model (AIXM), Exchange Model goals, requirements and

design, December 2006, http://www.aixm.aero/Archive/...
2. Aeronautical Information Conceptual Model, Edition 1.0, Ref. AIS.ET2.ST01.2000-02, 01

October 1997 (Eurocontrol Extranet, OneSky Teams)
3. “Dynamic Features” Tim Wilson and David Burggraf. September 29, 2005. Contract deliverable

to FAA from Galdos Systems Inc.
4. GML: Geography Markup Language. Ron Lake, David S. Burggraf, Milan Trninic, Laurie Rae.

Wiley 2004.
5. Temporal Features, James Ressler, Northrop Grumman TASC, OPENGIS PROJECT

DOCUMENT #06-076
6. Geographic information - Geography Markup Language (GML), ISO 19136:2007(E) 2007-03-

12
7. AIXM Primer. 4.5 draft 2 Edition. EATMP-xxxxxx-xx. Nov. 28, 2005. EUROCONTROL.

http://www.EUROCONTROL.int/ais/aixm/exchange/aixm_primer.pdf.
8. Annex 15 to the Convention on International Civil Aviation - Aeronautical Information

Services. 12th Edition. ICAO. July 2004.

