
AIXM 5 AIXM version 5.0 AIXM Application Schema

AIXM

AIXM Application Schema Generation

AIXM 5 AIXM version 5.0 AIXM Application Schema

Aeronautical Information Exchange Model
(AIXM)

Copyright: 2008 - EUROCONTROL and Federal Aviation Administration

All rights reserved.

This document and/or its content can be download, printed and copied in whole or in part, provided that the
above copyright notice and this condition is retained for each such copy.

For all inquiries, please contact:

Brett BRUNK - brett.brunk@faa.gov

Eduard POROSNICU - eduard.porosnicu@eurocontrol.int

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition No. Issue Date Author Reason for Change

0.1 2007/12/20 Barb Cordell /
Paul Heffley

First Edition

0.2 2008/01/08 Barb Cordell /
Paul Heffley

Updated version

1.0 2008/03/10 Eddy
Porosnicu

First public version

Editorial modifications

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page i of 25
i

CONTENTS

1 SCOPE .. 1

1.1 Introduction ... 1

1.2 Background.. 1

1.3 Objective .. 3

1.4 Glossary.. Error! Bookmark not defined.

1.5 References .. 3

2 EXTENDING AIXM FEATURES / OBJECTS.. 4

2.1 UML Package for Extensions ... 4
2.1.1 Package Specifications and Namespaces .. 4
2.1.2 Package Structure.. 4

2.2 UML Extension Package... 5
2.2.1 Overview... 5
2.2.2 XML Schema Generation ... 6

2.2.2.1 Imported and Included Schemas .. 7
2.2.2.2 Executing the Script ... 8
2.2.2.3 XML Schema Output ... 9

2.3 Data Type Extension Package .. 11
2.3.1 Overview... 11
2.3.2 XML Schema Generation ... 13

2.3.2.1 Imported and Included Schemas .. 13
2.3.2.2 Executing the Script ... 14

2.4 UML Message Package ... 15
2.4.1 Overview... 15
2.4.2 XML Schema Generation ... 16

2.4.2.1 Imported and Included Schemas .. 16
2.4.2.2 Executing the Script ... 16
2.4.2.3 XML Schema Output ... 16

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 1 of 25
1

1 Scope

1.1 Introduction
The purpose of this document is to describe how the AIXM UML model can be extended to
support the needs of a particular Community of Interest (COI):

 Define messages that are necessary and eventually restrict the content of these
messages to a sub-set of the AIXM features;

 Extend existing AIXM features with new attributes or associations or define new features,
which are only relevant for that community.

The UML to XML Schema conversion for extensions is illustrated using a series of examples
from the AIXM 5 Application Schema extensions.

1.2 Background
The AIXM conceptual model and data standard are maintained as a UML model. AIXM was
developed to be extendable allowing greater flexibility for international use. Each feature
and codelist may be extended to meet individual needs of the AIXM Community of Interest
(COI).

If you are not familiar with the AIXM UML to AIXM XSD mapping document please review
before reading this document. A good understanding of the mapping document will help to
understand AIXM extensions.

Features describe real world entities and are fundamental in AIXM. AIXM features can be
concrete and tangible, or abstract and conceptual and can change in time [7]. Features are
represented as classes with a stereotype <<feature>>. Examples include Runway and
AirportHeliport.

AIXM features are dynamic features. Timeslice objects are used to describe the changes
that affect the AIXM feature over time. Timeslice objects and temporality are discussed
extensively in a separate AIXM Temporality document.

Objects are abstractions of real world entities or, more frequently, of properties of these
entities, which do not exist outside of a feature. An object is created for two reasons in
AIXM:

• When a property has a multiplicity greater than one (such as the city served by an
AirportHeliport), or

• The object has its own attributes that are reused throughout the model, such as
ElevatedPoint.

Some classes are marked as <<choice>>. These are used to model XOR relationships.
For example, an AirspaceVolume’s horizontal projection can be a Surface, an
AirspaceCorridor or the same shape as for another Airspace.

Properties are the attributes and relationships that characterise a feature or object. In the
UML:

• Attributes are used to describe simple properties of a feature or object;
• Relationships are used to describe associations to features or objects. Whenever a

property has a multiplicity greater than one, it is described using a UML relationship
with cardinality.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 2 of 25
2

o Relationships to objects are depicted by the standard UML composition
(aggregation by value) association. Composition is a form of aggregation with
strong ownership and coincident lifetime of the parts by the whole. The part
is removed when the whole is removed

o Relationships to features are described with a standard UML association. All
of the associations are navigable in only one direction. This shows that the
two classes are related but only one class knows that the relationship exists

The UML model lists the datatypes that are used throughout the model. These are given one
of three stereotypes:

• <<datatype>> – This is basic data type that specifies a pattern to use.
• <<enumeration>> – This codes a fixed list of values. The OTHER value is

important for mapping future changes to the list. If a value is added in the future and
is not recognised by the current enumeration, it is mapped to the OTHER value.

• <<codelist>> – This is similar to an enumeration in that it is used to indicate a list
of possible values. However, the list can be expanded, which means that the codelist
is a union between the explicitly enumerated values and free text.

When information about a relationship is required, a UML association class is used. The
association class is attached to the relationship with an Association Class line.

Navaid
type : CodeNavaidServiceType
designator : CodeNavaidDesignatorType
name : TextNameType
landingCategory : CodeLandingAidCategoryType
operationalStatus : CodeStatusNavaidType
flightChecked : CodeYesNoType

<<feature>>

NavaidComponent
collocationGroup : NoSequenceType
markerPosition : CodePositionInILSType
providesNavigableLocation : CodeYesNoType

<<object>>

0..*

0..*

0..*

+navaidEquipment0..*

NavaidEquipment
designator : CodeNavaidDesignatorType
name : TextNameType
emissionClass : CodeRadioEmissionType
mobile : CodeYesNoType
magneticVariation : ValMagneticVariationType
magneticVariationAccuracy : ValAngleType
dateMagneticVariation : DateYearType
operationalStatus : CodeStatusNavaidType
flightChecked : CodeYesNoType

<<feature>>

isComposedOf

Inheritance refers to the ability of one class (the specialized or child class) to inherit the
properties of another class (the generalized or parent class), and then add new properties of
its own. In AIXM, Features must only inherit from other Features and Objects must only
inherit from other Objects. Multiple inheritance is not allowed.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 3 of 25
3

Important Note: Inheritance is supported only from “Abstract” classes. The UML to XSD
scripts do not support the inheritance from non-Abstract classes. The “extension”
mechanism, explained in this document, gives the possibility to extend an existing AIXM
class with new properties, with the advantage that the extended class remains valid against
the core AIXM schema.

1.3 Objective
The core AIXM model provides the definition of standardised aeronautical information
features. In order to use AIXM for a specific application, a Community of Interest (COI) will
have to agree upon how instances of AIXM features are to be exchanged and
communicated in the community. This can be accomplished by either using a pre-defined
Web Service (such as WFS), which enables the direct provision of individual AIXM features
or collections of AIXM features or by defining custom AIXM messages with specific
properties and encompassing a selected list of AIXM features.

In the definition of the AIXM Application Schema, the COI might also want to extend the core
AIXM with additional properties and features. Some principles that regulate such extensions
include:

• An extension of an existing AIXM feature should remain valid against the definition of
the core AIXM XSD element with the same name (for that purpose, the
AbstractSomeFeatureExtension element is provided in the core AIXM XSD). A
consequence is that it is not possible to extend <<enumerations>> and
<<datatype>> classes. Only <<codelist>> may be extended.

• An additional feature and objects shall follow the core AIXM modelling conventions
(stereotypes, naming, data types, etc.)

Important Note: It is under the responsibility of the COI to ensure that the extensions do not
duplicate features and properties that already exist in the core model. When such extensions
are defined, the COI might want to share it with the global AIXM community. For this
purpose, the application schema can be made available through www.aixm.aero.

1.4 References
1. Geographic Information – Spatial Schema. ISO 19107. First Edition, 2003-05-01
2. Geography Markup Language (GML). ISO/TC 211/WG 4/PT 19136 OGC GML

RWG. Committee Draft. 2004-02-07.
3. UML 2.0 In a Nutshell. Dan Pilone. O’Reilly Media Inc. 2005.
4. AIXM UML to XML Schema Mapping, www.aixm.aero (see Downloads)
5. AIXM Temporality Model, www.aixm.aero (see Downloads)

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 4 of 25
4

2 Extending AIXM Features / Objects

2.1 UML Package for Extensions

To extend AIXM, a new package must be created under the AIXM Application Schemas
package. This package will contain all the information you need for your extension.

2.1.1 Package Structure

Different types of sub-packages are used to control the generation of appropriate XML
schemas (XSD). The Extension sub-package contains the extensions to AIXM Core
features and objects. If the extension requires new data types, then a second sub-package,
the Extension Data Types, is created containing any new data
types, enumerations, and codelists needed. The final sub-
packages that are needed are the message packages.
Multiple packages may be required based on the number of
different message schemas needed. Most Application
Schema Packages will have at least one request package and
one response package.

2.1.2 Package Specifications and Namespaces

The extension package must have the appropriate XSD tool attributes set so the script can
generate the namespaces correctly. Below is an example of how these attributes are set for
the Fix Holding Data sub-package.

There are five properties that are needed for
each new Application Schema package being
used to generate XML Schemas. These
properties are highlighted below with the
Source as ‘Override’.

To modify the value of these properties, open
the Package Specification and navigate to the
XSD tab. The targetNamespace and
targetNamespacePrefix property values are
determined by the COI and used in
accordance with other related schemas and
will determine if an external import is included
or imported.

Additionally, denote the generateFilename
property as applicable so the schema is
named consistently each time it is generated
with the UML to XSD scripts.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 5 of 25
5

The following was generated for the Fix Holding Data Application Schema package.

<schema xmlns:fix="http://www.faa.gov/FPP/fixes"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:aixm="http://www.aixm.aero/schema/5.0"
xmlns:dpshare="http://www.faa.gov/avnis/shared"
targetNamespace="http://www.faa.gov/avnis/fixes"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

2.2 UML Extension Package

2.2.1 Overview
A feature or object may be extended by creating a class with the same name as the core
AIXM feature and giving it a stereotype <<extension>>. This new class can contain:

 New attributes
 New associations. Important Note: if a core AIXM class is involved, the navigability of

the association should always be from the <<extension>> class towards the core AIXM
class.

In addition, it is possible in extensions to create declare totally new classes (features and
objects), that do not extend existing AIXM Core classes. The only rule is to follow the AIXM
UML modelling conventions described at the beginning of the document. This will enable the
script AIXM-FeatureGenerator.ebs to correctly generate the XML elements for these new
classes. This situation is not described in detail in this document because it does not require
any special action. Just follow the UML modeling conventions.

The example below shows the modelling convention used to extend the DesignatedPoint
feature. The example adds a new attribute to DesignatedPoint and a new relationship to a
new object called DesignatedPointNASUse.

DesignatedPointNASUse
designatedPointUse : CodeDesignatedPointUseType

<<object>>

DesignatedPoint

designator : CodeDesignatedPointDesignatorType
type : CodeDesignatedPointType
name : TextNameType

(from Points)

<<feature>>

DesignatedPoint
airspaceDocket : TextDesignatorType
compulsoryReporting : CodeCompulsoryReportingType

<<extension>>

0..* +DesignatedPointNASUse0..*

provides

Associations can also be created between new features or objects and AIXM Core features
or objects as depicted below in the association between AdverseAssumptionObstacle and

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 6 of 25
6

AirportHeliport. The new association should be created in the Application Schema package
and towards the AIXM Core Feature rather than an extension (if present). This action
ensures the relationship is represented properly in the XML Schema

Elev atedSurf ace

elev ation : ValDistanceVerticalTy pe
geoidUndulation : ValDistanceSignedTy pe
v erticalDatum : CodeVerticalDatumTy pe
v erticalAccuracy : ValDistanceTy pe

(from Geometry)

<<object>>

AirportHeliport

designator : CodeAirportHeliportDesignatorTy pe
name : TextNameTy pe
locationIndicatorICAO : CodeICAOTy pe
designatorIATA : CodeIATATy pe
ty pe : CodeAirportHeliportTy pe
certif iedICAO : CodeYesNoTy pe
priv ateUse : CodeYesNoTy pe
controlTy pe : CodeMilitary OperationsTy pe
ref erencePointDescription : TextDescriptionTy pe
f ieldElev ation : ValDistanceVerticalTy pe
f ieldElev ationAccuracy : ValDistanceVerticalTy pe
v erticalDatum : CodeVerticalDatumTy pe
locationDescription : TextDescriptionTy pe
magneticVariation : ValMagneticVariationTy pe
magneticVariationAccuracy : ValAngleTy pe
dateMagneticVariation : DateYearTy pe
magneticVariationChange : ValMagneticVariationChangeTy pe
ref erenceTemperature : ValTemperatureTy pe
altimeterCheckLocation : TextDescriptionTy pe
secondary PowerSupply : TextDescriptionTy pe
windDirectionIndicator : TextDescriptionTy pe
landingDirectionIndicator : TextDescriptionTy pe
transitionAltitude : ValDistanceVerticalTy pe
transitionLev el : ValFLTy pe
lowestTemperature : ValTemperatureTy pe
abandoned : CodeYesNoTy pe

(from Airport/Heliport)

<<f eature>>

AirportHeliport
serv iceAReporting : CodeYesNoTy pe
WAASAv ailable : CodeYesNoTy pe

<<extension>>

Adv erseAssumptionObstacleArea
apply AAOExemptArea : CodeYesNoTy pe
AAOExemptAreaRadius : ValDistanceTy pe

<<f eature>>

1

0..1

1

+elev atedSurf ace 0..1

isPositionedOn

1

0..*

+AirportHeliport

1

0..*
isSituatedOn

Use the approved rules for AIXM Core elements to produce new features or objects. Some
rules that apply to new extension classes are:

• The extension class stereotype must be <<extension>>.
• The extension class name for the extension must match the class you are extending.

(When using Rational Rose, it is possible to do that if you create a new class in the
navigation menu at the left and change the name of that class; only afterwards drag
and drop the class on the diagram.)

• The extension class must be a specialized class extending the matching base class.
• The extension class attributes are added to the extension class the same as they

would a regular AIXM class (Data Types are discussed later in this document).

2.2.2 XML Schema Generation
Use the AIXM-FeatureGenerator.ebs script to generate the extension XML Schema in which
the script triggers the generation of an extension element by recognizing the <<extension>>
stereotype. Generation of the extension follows the AIXM generation rules.

If new data types, enumerations or codelists are introduced the script, AIXM-
DataTypeGenerator.ebs, must be executed first on the associated Data Type Package.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 7 of 25
7

2.2.2.1 Imported and Included Schemas
Every application schema sub-package must incorporate imported XML Schemas from the
AIXM Core Schemas. Additionally, if new data types, enumerations or codelists are
introduced, the schema from that sub-package must be included. It is sometimes required
to utilize common objects from a ‘shared’ package to increase object re-use. These
elements should be incorporated as well by importing the schema.

It is not required for these schemas to be generated for the script to run in Rational Rose,
but if they are not created and in the folder structure when the schema is opened it will have
errors. The script, AIXM-DataTypeGenerator.ebs, is used to create the schema on the
associated Data Type sub-package.

These linked schemas, essentially URL’s, can be incorporated by entering them on the Files
tab of the Package Specification.

They can be added also be added in the navigation window by entering the full path of the
schema location within the model.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 8 of 25
8

2.2.2.2 Executing the Script
There are some specific options that need to be set when executing the script in Rational
Rose, but most of the options will be defaulted. In the image below, notice the File Name is
pulled from the generateFilename property set in the package specification earlier.

The schema generation scripts are used for both AIXM Core and Application Schemas. The
checkbox for ‘Include AIXM NS’ is selected when executing scripts for packages that are not
part of the AIXM Core set since the AIXM Namespace is automatically included for those
schemas. Furthermore, select the checkbox for ‘Load QUID’s from model’ when new
classes have been added to the model since the script was last run, which ensures the
element identifiers are correctly recognized.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 9 of 25
9

After selecting ‘Finish’ and regenerating the QUID’s (if needed), a dialogue will open to allow
the addition or editing of the XSD Header attributes. It should not be necessary to make any
changes, but notice the targetNamespace attributes generated from the package
specifications set earlier. After selecting ‘OK’, the XML schema file will be generated and
can be found in the directory in which the script was run.

2.2.2.3 XML Schema Output
Classes with the stereotype of <<extension>> generates three related elements for that
class.

• <classname>ExtensionPropertyGroup
• <classname>ExtensionType
• <classname>Extension

The <classname>ExtensionProperyGroup contains the properties (elements and
relationships) of the Extension.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 10 of 25
10

The <classname>ExtensionType element is generated as a XMLSchema <complexType.>
and extends base type aixm:AbstractExtensionType.

The <classname>Extension element is generated as a XMLSchema <element>. The
Extension element cannot stand alone, it may only exist as an extension to an AIXM base
element. The Extension element does not have a timeslice. The Extension element
attribute substitutionGroup is the substitutionGroup of the base type extension. Extension
elements are not extensible.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 11 of 25
11

2.3 Data Type Extension Package

2.3.1 Overview

An extension, new feature or object class may require additional data types, codelists or
enumerations to capture the valid values for new attributes added to the class. To add new
data types, enumerations or codelists create a Data Type sub-package containing any new
data types needed.

In the example below, an <<enumeration>> is defined in an extension package. It is called
CodeDesignatedPointUseType, it has a generalization to the ‘string’ class and inherits the
basic attributes of an XSD string variable. This is the most common configuration for
enumerations.

string

<<XSDf acet>> whiteSpace : nu ll = preserv e
(from XMLSchemaDatatypes)

<<XSD sim pleType>>

CodeDes ignatedPointUseTy pe

WP : string
RADAR : string
DME : string
INT : string
CNF : string
OTHER : string

<<enumeration>>

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 12 of 25
12

AIXM Core <<codelists>> can also be extended in the Data Type sub-package. Extend a
codelist by creating a class with the same name as the codelist and giving it a stereotype
<<enumeration>>.

string

<<XSDfacet>> whiteSpace : null = preserv...
(from XMLSchemaDatatypes)

<<XSDsimpleType>>

CodeApproachLightingType

ALSAF : string
MALS : string
MALSR : string
SALS : string
SSALS : string
SSALR : string
LDIN : string
ODALS : string
AFOVRN : string
MILOVRN : string
CALVERT : string

(from AIXM Data Types)

<<codelist>>

CodeApproachLightingType
US-CONFIG
NATO-STD
CL-2XBAR
OVRN-CL
HALS
ALS
ALS-1
EALS
HIALS
NSTD
OLS
RAIL

<<enumeration>>

Careful analysis must be done to ensure that the extended list of values remains normalised.
It shall not duplicate values that already exist in the core <<codelist>>, but with other
names/abbreviations.

It is not possible to extend AIXM core <<enumeration>> data types. In this situation the
AIXM Core enumeration should remain unchanged and an additional attribute shall be

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 13 of 25
13

added in the class of concern, using the supplementary values as another enumeration, with
a different name.

Lastly, if additional values are required for an AIXM Core enumeration for international data
exchange, then AIXM Core model will need to be updated.

2.3.2 XML Schema Generation

Use the AIXM-DataTypeGenerator.ebs script to generate the data type extension XML
Schema. Data Types are generated as a XMLSchema <simpleType> with the appropriate
facets, Patterns and/or enumerations defined.

2.3.2.1 Imported and Included Schemas

Each data type sub-package must incorporate the AIXM Core Data Type schema. It is not
required for this schema to be generated for the script to run in Rational Rose, but if the
AIXM Core Data Type schema is not created and in the folder structure when the schema is
opened it will have errors.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 14 of 25
14

2.3.2.2 Executing the Script
In the image below, notice the File Name is pulled from the generateFilename property set in
the package specification earlier. However the Path denotes the location of the UML model
file, which should be changed appropriately. The checkbox for ‘Include AIXM NS’ is
selected when executing scripts for packages that are not part of the AIXM Core set since
the AIXM Namespace is automatically included for those schemas.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 15 of 25
15

2.4 UML Message Package

2.4.1 Overview
The message package is used to generate an XML Schema for request and response
messages. Below is an example of the FixHoldingData Response Message. This message
includes the extensions described previously even though they do not appear in the
diagram.

A Message is modelled in UML using the class object with a stereotype <<message>>. In
this example the message is a limited collection of AIXM features with extensions. This is
modelled by relating the collection of features; <<collectionMemberChoice>> to the
message through the relationship “hasMember”.

AngleIndication

an gl e : ValB eari ng Type
an gl eTyp e : Cod eBeari ng Type
indicat ion Directi on : Co de Directi onRe ferenceType
tru eAngle : Va lBea rin gType
cardina lDire ct ion : Co deCardin al Di rectio nType
mini mumRe ce ptionAlti tud e : ValDi sta nceVertical Type

(from Point Reference)

<<feature>>

FixHoldingDataMessage
<<me ssag e>>

HoldingPattern

type : Cod eHol dingUsag eType
outbo undCourse : ValBe aringType
outbo undCourseType : CodeCourseType
inb ou ndCourse : Va lBea ringType
turnDire cti on : Co deDi rection TurnType
upperLimi t : ValDistanceVerticalT yp e
upperLimi tRefere nce : CodeVertical Refe renceT yp e
lowerLimit : Va lDistan ce Verti ca lType
lowerLimitRefe rence : Cod eVerticalRe ferenceType
spe edLi mi t : ValSpeedT ype
descri ption : TextDescrip tionType
nonStandardHoldin gReason : TextDescri pti onType

(from Holding)

<<feature>>

De si gnate dPoint

designator : CodeDesignatedPointDesignatorType
type : CodeDesignatedPointType
name : TextNameType

(from Navaids Points)

<<feature>>

DistanceIndication

distance : ValDistan ce Type
mi nimumRece pt ion Altitud e : Val Dista nceVerticalType
typ e : Cod eDistanceIn di ca tio nT ype

(from Point Reference)

<<feature>>

Fi xHoldin gDataCollecti on
<<collectionMemberChoice>>

0..10..1

0..*0..*

hasMember

0..10..1

0..10..1

0..10..1

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 16 of 25
16

2.4.2 XML Schema Generation
Use the AIXM-ApplicationSchemaGenerator.ebs script to generate the message XSD. The
script triggers the generation of the message element by recognizing the <<message>>
stereotype.

2.4.2.1 Imported and Included Schemas
The UML Message sub-package brings together all of the related elements created in earlier
processes such as extensions and data types. As before, the AIXM Core schema must be
included as well as any other referenced schemas (i.e. shared or common objects that are to
used in multiple application schemas).

The accumulation of the imported and included XML Schemas is displayed below.

<import namespace="http://www.opengis.net/gml/3.2"
 schemaLocation="./ISO_19136_Schemas/gml.xsd"/>
<import namespace="http://www.aixm.aero/schema/5.0"
 schemaLocation="./AIXM_Feature.xsd"/>
<import namespace="http://www.w3.org/1999/xlink" schemaLocation="./xlink/xlinks.xsd"/>
<import namespace="http://www.faa.gov/avnis/shared" schemaLocation="./FPP-
 Shared_Feature_Extension.xsd"/>
<include schemaLocation="FPP-Fix_Extension_Data_Types.xsd"/>
<include schemaLocation="FPP-Fix_Extension.xsd"/>

2.4.2.2 Executing the Script
Follow the procedures outlined in section 2.2.2.2.

2.4.2.3 XML Schema Output
Classes with the stereotype of <<message>> following the AIXM feature collection response
generates four related elements for that class.

• <classname>CollectionPropertyGroup
• <classname>MessagePropertyGroup
• <classname>MessageType
• <classname>Message

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 17 of 25
17

The <classname>CollectionPropertyGroup is generated as a XMLSchema <complexType>,
which extends gml:AbstractFeatureMemberType, and includes a <choice> between the all
the features it is pointing to.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 18 of 25
18

The <classname>MessagePropertyGroup is generated as a XMLSchema <group>, which
contains the properties (elements and relationships) of the Message.

The <classname>MessageType element is generated as a XMLSchema <complexType.>
and extends base type aixm:AbstractAIXMMessageType.

AIXM 5 AIXM version 5.0 AIXM Application Schema

Edition: 1.0 Page 19 of 25
19

The <classname>Message element is generated as a XMLSchema <element>. The
associations are treated as objects. They are included in the schema.

